

Ensayo en AgriChile Huerto adulto de Avellano Europeo

Cumpeo, Talca. 08/08/2022

Objetivos

En conjunto con el personal de **Agrichile** se realizaron pruebas para evaluar el comportamiento del cultivo de avellano europeo a través de los siguientes parámetros:

Fisiología vegetal

- Nutrición vegetal
- Reservas del cultivo

Fitosanidad

- Control de Xac
- Comportamiento de microbiología del suelo

Rendimiento industrial

Calidad visible

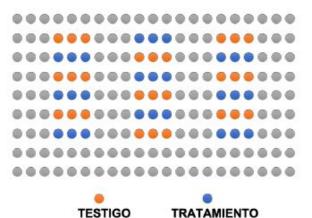
Para esto, **Acorgánica** propuso la aplicación de los siguientes productos:

Especificaciones

Ubicación: Camarico, Cumpeo **Cultivo:** Avellano Europeo var. TDG

Periodo de prueba: 2 años (Sep 20 - Jul 22)

Producto(s) aplicado(s):


NPKelp® 2-3L/ha

CopperKelp® 2-3L/ha

Diseño experimental:

Un bloque con repeticiones alternadas no adyacentes para testigo y tratamiento. Se establece una distribución de 3 árboles por repetición en la misma fila, dejando 3 árboles de guarda interna y 3 de guarda externa.

Programa de aplicaciones

NPKelp®

CopperKelp®

12 L / ha

9 L / ha

CICLO 20 - 21

MES Semana	SI 1	PTIE	1000	RE 4	1	OCTI		4	1 N	OVIE 2	100	4 RE 4	1	DICIE 2		4 E	1	ENE 2	RO 3	4	
	1	2	3		4	2	3		1000	2	3	4		2	3			-	3	4	
CopperKelp®									3				3				2				8L/
NPKelp®									2				3				3				8L/
CopperKelp®	3			2		3															8 L /
NPKelp®	3			3		3									e e	_					9 L

CICLO 21 - 22

Aporte nutricional

Ingrediente activo	%P/P
Algas marinas (Macrocystis pyrifera y Gelidium robustum)	59.00 %
Ingredientes auxiliares para	
la extracción y estabilización	41.00 %
	00.00 %

COMPOSICIÓN GARANTIZADA

Materia orgánica	3.62 %
Nitrógeno	0.08 %
Potasio	1.48 %
Fósforo	
Calcio	676.60 ppm
Magnesio	
Boro	4.47 ppm

Ingrediente activo	% P / P
Extracto de algas marinas (Macrocys	stis pyrifera
y Gelidium robustum)	97.00 %
Ingredientes auxiliares para estabiliza	ación 3.00 %
TOTAL	100.00 %

COMPOSICIÓN GARANTIZADA

Materia orgánica	2.14 %	
Nitrógeno	0.07 %	
Potasio	1.35 %	
Fósforo	0.005 %	
Cobre	0.23 %	i
Calcio	294.55 ppm	
Magnesio	43.90 ppm	
Boro		

Análisis de suelo

1-2 apps

Octubre 2021

Marzo 2022

1-2 apps

13-9-22 Ca(NO₃)₂

Dif. (%)	Control	Tratado	ELEMENTO	Control	Tratado	Dif. (%)
-71,42 %	36	21	N ppm (11-60)	24,2	24,8	2,40 %
83,33 %	<4	24	P ppm (5 – 25)	0,13	0,13	0,00 %
- 18,32 %	323	273	K ppm (50 – 150)	82,1	148,6	44,75 %
- 23,72 %	1012	818	Ca ppm (400 – 1600)	315	385	18,18 %
- 7,14 %	180	168	Mg ppm (24 – 200)	181	259	30,11 %
14,06 %	55	64	Fe ppm (5 – 60)	0,00	0,10	-
20,00 %	36	45	Mn ppm (2 – 50)	0,20	0,30	33,33 %
- 37,20 %	5,90	4,30	Zn ppm (0.5 – 5)	0,00	0,00	0,00 %
0,00 %	3,00	3,00	Cu ppm (0.2 – 5)	0,00	0,00	0,00 %
- 20,00 %	1,20	1,00	B ppm (0.5 – 2)	0,10	0,10	0,00 %
0,00 %	<23	<23	Na ppm (40 – 230)	322	285	- 12,98 %
	6,70	6,60	pH	6,80	7,10	
	0,09	0,08	C.E. (dS/m)	0,05	0,06	
	2,70	2,50	Mat. Org. (%)	2,40	2,60	

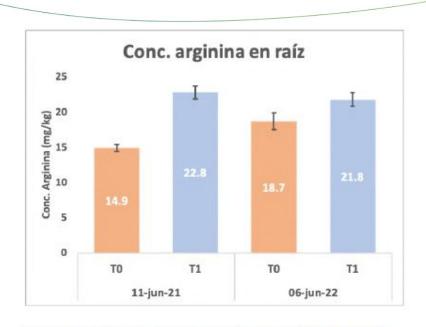
9-23-15 Ca(NO₃)₂

Análisis foliar

Temporada 20-21 (Marzo)

Temporada 21-22 (Marzo)

1-2 apps


9-23-15 Ca(NO₃)₂

Dif. (%)	Control	Tratado	ELEMENTO (REF)	Control	Tratado	Dif. (%)
-5,58 %	1,96	1,85	% N (1,80 – 3,00)	2,22	2,37	6,46 %
0,00 %	0,17	0,17	% P (0,12 – 0,45)	0,20	0,30	32,58 %
4,59 %	0,90	0,94	% K (0,80 – 2,00)	0,98	1,03	4,84 %
3,03 %	1,71	1,76	% Ca (0,65 – 2,50)	1,59	1,59	0,00 %
2,27 %	0,29	0,29	% Mg (0,18 – 0,50)	0,24	0,26	6,41 %
-9,53 %	433,00	395,33	Fe ppm (25 – 800)	905,00	954,67	5,20 %
-11,88 %	555,67	496,67	Mn ppm (25 – 800)	531,67	459,67	-15,66 %
9,63 %	56,33	62,33	Zn ppm (15 – 80)	164,67	128,33	-28,31 %
39,13 %	9,33	15,33	Cu ppm (3 – 50)	11,33	11,67	2,86 %
-1,01 %	100,00	99,00	B ppm (25 – 80)	90,00	86,67	-3,85 %
-	-		% Na (<1000)	208,33	214,67	2,95 %
		-	% CI (<0,5)	0,12	0,12	0,00 %
2	-	-	Clorofila (SPAD)	36,67	56,00	34,52 %

Análisis de arginina en raíces

Los promedios de concentración de arginina fueron:

CONTROL

2021: 14,9 ± 0,5

2022: 18,7 ± 1,2

TRATADO

2021: 22,8 ± 0,9

2022: 21,8 ± 1,0

En los dos años de seguimiento del trabajo, las muestras del tratamiento (T1) han mantenido concentraciones de arginina mayores a 21,0 mg/kg (2,1 %).

No obstante, y a pesar de que el sector **testigo (T0)** mejoró en el 2022, las concentraciones de reserva se mantienen por **debajo de 20,0 mg/kg (2,0 %).**

Microbioma general de suelo

CONTROL

Se encontró la siguiente biodiversidad:

OCT/21: 174 especies de bacterias

95 especies de hongos

*Relación H/B: 0.54

FEB/22: 55 especies de bacterias

42 especies de hongos

*Relación H/B: 0.76

En cuanto a los microorganismos fitopatógenos, se detectaron:

1 especie de bacteria
(Enterobacteriaceae Erwinia)
19 - 7 especies de hongos

TRATADO

Se encontró la siguiente biodiversidad:

OCT/21: 64 especies de bacterias

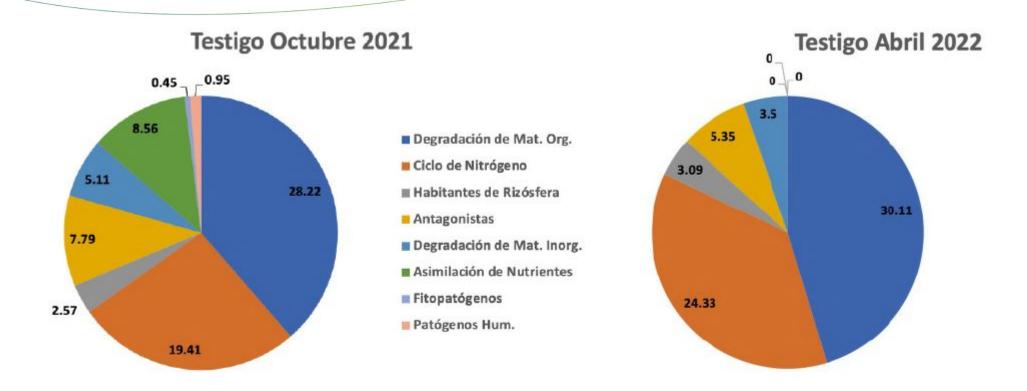
40 especies de hongos

*Relación H/B: 0.62

FEB/22: 44 especies de bacterias

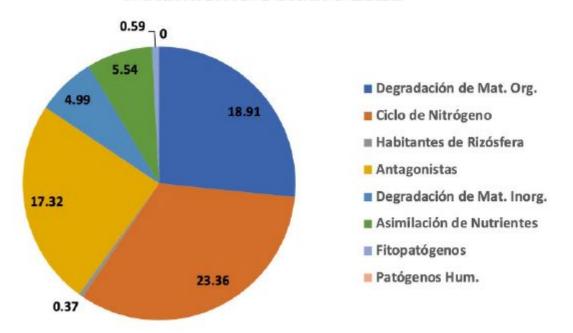
57 especies de hongos

*Relación H/B: 1.29

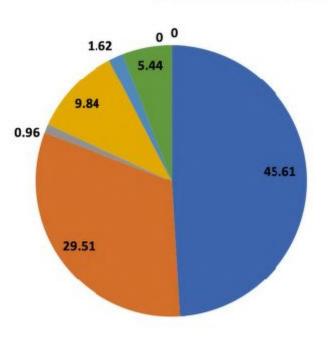

En cuanto a los microorganismos fitopatógenos, se detectaron:

1 especie de bacteria(Cytophagaceae / Cytophaga)10 - 7 especies de hongos

Microbioma bacterias control


- Incrementan microorganismos relacionados con el ciclo del nitrógeno.
- Disminuyen los antagonistas y asimiladores de materia inorgánica.
- Desaparecen asimiladores de nutrientes, fitopatógenos y patógenos para humanos.

Microbioma bacterias tratado



Tratamiento Abril 2022

- Incrementan microorganismos relacionados con la degradación de materia orgánica y ciclo del nitrógeno.
- Disminuyen los antagonistas y asimiladores de materia inorgánica.
- Se mantienen los asimiladores de nutrientes y desaparecen fitopatógenos.

Microbioma bacterias general

Clasificación	Bac	terias Cont	rol (%)	Bacterias Tratado (%)							
Clasificación	Oct-21	Abr-22	Diferencia	Oct-21	Abr-22	Diferencia					
Degradado Mat. Org.	28,22	30,11	▲ 1,89	18,91	45,61	▲ 26,70					
Ciclo de Nitrógeno	19,41	24,33	▲ 4,92	23,36	29,51	▲ 6,15					
Habitante Rizósfera	2,57	3,09	▲ 0,52	0,37	0.96	▲ 0,59					
Antagonista	7,79	5,35	▼-2,44	17,32	9,84	▼-7,48					
Degradador Mat. Inorg.	5,11	3,5	▼-1,61	4,99	1,62	▼-3,37					
Asimilador Nutrientes	8,56	0,00	▼-8,56	5,54	5,44	▼-0,10					
Fitopatógeno	0,45	0,00	▼-0,45	0,59	0,00	▼-0,59					
Patógeno Humano	0,95	0,00	▼-0,95	0,00	0,00	0,00					
No clasificado	26,94	33,62	6,68	28,92	7,02	-21,90					

En ambos sectores se muestra una tendencia similar de incremento(▲) o decremento(▼) en los mismos grupos. No obstante, resalta la mayor cantidad de microbiota relacionada con la degradación de materia orgánica, ciclo del nitrógeno y asimilación de nutrientes del sector tratado.

Ambos sectores redujeron la cantidad de patógenos para humano y vegetales.

MICROORGANISMOS REPRESENTATIVOS

Fitopatógenos

- Cytophagaceae / Cytophaga (0,59 %)
- Enterobacteriaceae Erwinia (0,45 %)

Patógenos para Humanos

- Cellulomonadaceae Oerskovia (0,17 %)
- Legionellaceae / Legionella (0,23 %)

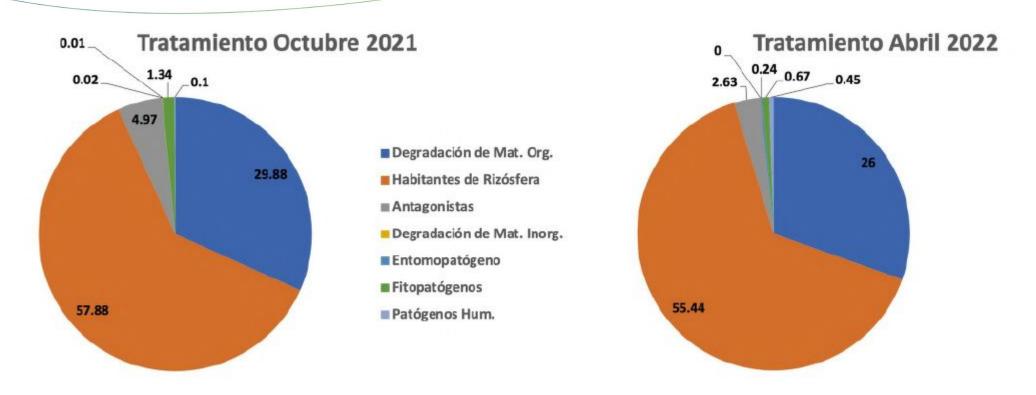
Ciclo de nitrógeno

Nitrosomonadaceae MND1 (2 – 4,5 %)

Asimilación / Antagonista

Bacillaceae / Bacillus (2,6 – 6,7 %)

Microbioma hongos control



- Incrementan microorganismos relacionados con la degradación de materia orgánica.
- Disminuyen habitantes de rizosfera, antagonistas y fitopatógenos.
- Se mantienen los patógenos para humanos.

Microbioma hongos tratado

- Ningún incremento significativo.
- Disminuyen degradadores de materia orgánica, habitantes de rizosfera, antagonistas y fitopatógenos.
- Se mantienen los patógenos para humanos.

Microbioma hongos general

Clasificación	Но	ngos Contr	ol (%)	Hongos Tratado (%)						
Clasificación	Oct-21	Abr-22	Diferencia	Oct-21	Abr-22	Diferencia				
Degradador Mat. Org.	28,95	36,14	▲ 7,19	29,88	26,00	▼-3,88				
Habitante Rizósfera	49,30	36,65	▼-12,65	57,88	55,44	▼-2,44				
Antagonista	9,46	3,95	▼ -5,51	4,97	2,63	▼-2,34				
Degradador Mat. Inorg.	0,00	0,00	0,00	0,02	0,00	▼-0,02				
Entomopatógeno	0,50	0,06	▼ -0,44	0,01	0,24	▲ 0,23				
Fitopatógeno	2,16	1,48	▼ -0,68	1,34	0,67	▼-0,67				
Patógeno Humano	0,23	0,24	▼ -0,01	0,10	0,45	▲ 0,35				
No clasificado	9,40	21,48	12,08	5,80	14,57	8,77				

En ambos sectores el grupo más representativo fue el de **habitantes de la rizósfera**, siendo en su mayoría **hongos del tipo micorrizas** los encontrados.

Al igual que el comportamiento de las bacterias, en el análisis final se encontró menor cantidad de hongos fitopatógenos en ambos sectores.

Se resalta también que el sector tratado tuvo menor fluctuación en los porcentajes analizados.

MICROORGANISMOS REPRESENTATIVOS

Habitantes de la Rizosfera (Ectomicorriza)

- Laccaria trichodermophora (14 46 %)
- Tomentella spp. (1 39 %)
- Trichophaea woolhopeia (1 10 %)

Fitopatógenos

- Alternaria (0,20 0,32 %)
- Botrytis caroliniana (0,34 %)
- Cladosporium (0,10 0,25 %)
- Fusarium (0,16 0,46 %)

Patógenos para Humanos

Exophiala equina (0,10 – 0,23 %)

Antagonista

Trichoderma (2 – 4,5 %)

Entomopatógeno

Cordyceps bassiana (0,49 %)

Cuantificación qPCR Xac

CICLO 2020 - 2021

MES	SE	PTIE	MB	RE		ост	JBR	E	N	OVII	EMB	RE	1	DICI	EMB	RE			ENI	ERO)		FEI	BR	ERO			M	ARZO)		A	BRIL	L			M	AYC)	
Semana	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1		2	3	4	1	1 2	2	3	4	1	2	3	4	1	2	3	1	4	1	2	3	1	4
													_	_	x 10		1	1	2	-	000	lici	ón	+	ro	di-	*20	10	0	2	dic	ior	nh	ro	7				İ	
CONTROL										_		H	- 9	-	x 10)^2															trac						-	H	+	
												H		_	I.D.																nba								+	
TRATADO														Name and Address of the Owner, where	x 10														ial.				-/							
										_		-	3	,19	x 10	^5		-			-	-		-	-	-			1011	1	1	1	-	-	_		H	-	+	
												H				H		+			H	t	+	+	-			H	+	H	+	H	H	t				H	÷	
								-	-			-												-	-			+	-	+	-	-	-	-			-	+-		
												H	CI	CL	0	20	02	1	_	2	02	22		+	-			-		H	H	H	H	+			H	H	ł	
MES	SE	PTIE	МВ	RE	-	ості	JBR	E	N	OVII	ЕМВ	_			.O EMB		02			2 ERO		22		BRI	ERO			M	ARZO)		Al	BRIL	L			M	AYC	<u> </u>	
MES Semana	SE 1	PTIE	_		1	ост (JBR 3	E 4	N 1			RE			ЕМВ	RE	I			ERO)	I	FEI	_	ERO 3		1	M/	_	_	1	_	BRIL 3	_	4	1		AYC	_	4
	-		_		1	OCTU 2	3	4	1	2	3	RE 4	1	2	3	RE 4	1		ENI 2	3)	I	FEI	_	_		1	2	_	_	1	_	_	_	4			3		
Semana	-		_		8, 5,	,26 >	10'	4 ^2	1	.OS	3	RE 4	1 Ita	2 do	3 S (RE 4	ten	ic	ENI 2	3)	I	FEI	_	_		1	2	3	_	1	_	_	_	4	3	,20	x 10	0^3	3
Semana	-		_		8, 5,	,26 > ,09 ×	3 10' 10' 10'	4 ^2 ^7	1	.OS	3	RE 4	1 Ita	2 do	3 S (RE 4	1	ic	ENI 2	3)	I	FEI	_	_		1	2	3 I.D.	_	1	_	_	_	4	3 1 4	,20 ,80	× 10 × 10 × 10	0^3 0^3 0^3	3
Semana	-		_		8, 5, 2,	,26 > ,09 x ,05 >	3 10' 10' 10' 10'	^2 ^7 ^4	1 L	os en	re oct	A sub	1 Ita	do mo	3 S (OST)	RE obt	ten	id	2 dos	3)	I	FEI	_	_		1	2	3 I.D. I.D.	_	1	_	_	_	4	3 1 4	,20 ,80 ,10	× 10 × 10 × 10 × 10	0^3 0^3 0^3 0^4	3
	-		_		8, 5, 2, 6, 3,	,26 > ,09 ×	3 10' 10' 10' 10' 10'	4 ^2 ^4 ^4 ^4	1 E	os en	re	RE 4 esu cub	lta re on	do mo	3 S (costi	obt rar	ten	nid u	dos	3)	I	FEI	_	_		1	2	3 I.D. I.D.	_	1	_	_	_	4	3 1 4 1	,20 ,80	× 10 × 10 × 10 × 10	0^3 0^3 0^3 0^4 0^3	3

Cuantificación qPCR Xac

Tabla 1. Resultados de la técnica de qPCR para detección de bacterias XAC (Xanthomonas arborícola corylina).

Tipo de Muestra	Análisis realizado	Código Cliente	Variedad	Resultados (NC/g)
		TOR1		3,2x10 ³
		TOR2		1,8×10 ³
Hojas de		TOR3		4,1x10 ³
avellano		T1R1		1,4×10 ⁴
	Reacción de la	T1R2		1,1x10 ³
	polimerasa en	T1R3	N/A	2,2x10 ³
	cadena cuantitativa (qPCR)	TOR1		2,6x10 ⁴
	caunitativa (qr city	TOR2		6,3x10 ³
Yemas de		TOR3		<l.c< td=""></l.c<>
avellano		T1R1		4,3x10 ³
		T1R2		6,3x10 ³
		T1R3		1,6x10 ⁴

En el cierre de ciclo 2021-2022, la concentración total de Xac fue:

CONTROL (TO)

Hojas: (3,0 ± 1,2) x10³ NC/g
 Yemas: (10,8 ± 13,6) x10³ NC/g

TRATADO (T1)

Hojas: (5,8 ± 7,1) x10³ NC/g
 Yemas: (8,8 ± 6,3) x10³ NC/g

A inicios del ciclo 21-22 se observó un control/mitigación de la propagación de Xac, la cual se mantuvó en exponentes bajos $(10^3 - 10^4)$.

Cabe resaltar que el control referido ha sido para **tejido de yema**, donde se ha encontrado la concentración del producto **Copperkelp®** en otros frutales.

Calidad visible

	Peso	total	Va	na	Chu	pada	Mo	ho	Do	ble	Chir	iche	Año	Ant	
Muestra	C/cáscara	S/cáscara	Cant.	Peso	Rendimiento										
T0-21	1500	678 ± 8	17.3	21.9	3.5	1.4	1.5	1.3	0.5	0.8	1.8	1.8	0.0	0.0	45.10%
T0-22	1500	674 ± 7	16.5	24.2	0.5	0.4	6.3	6.3	0.5	0.7	0.0	0.0	0.0	0.0	44.50%
T1-21	1500	681 ± 6	3.5	4.2	3.8	1.5	0.8	0.7	0.0	0.0	0.8	0.8	0.0	0.0	45.30%
T1-22	1500	675 ± 13	5.3	7.8	2.5	1.9	7.8	7.4	0.8	1.0	0.0	0.0	0.0	0.0	44.70%

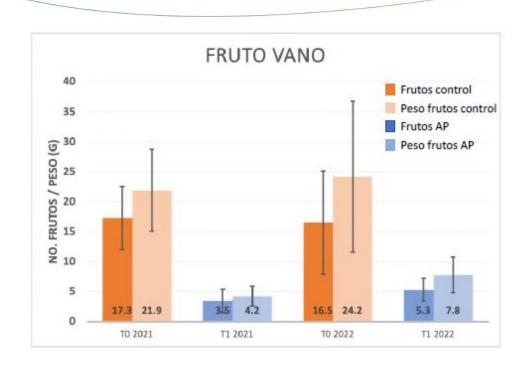
Se siguió el procedimiento establecido por Agrichile para la evaluación del **rendimiento industrial**, tomando cuatro muestras de **1500 g por cada medición**.

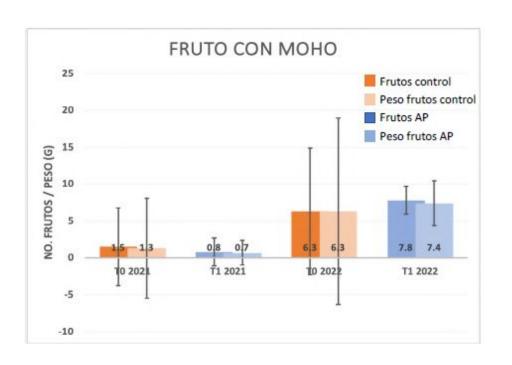
En los datos recabados se encontró lo siguiente:

Peso sin cáscara: Ligero incremento en tratamiento (no significativo).

Fruto vano: Menor cantidad de fruto vano (significativo).

Fruto chupado: Ligero decremento en testigo (no significativo).


Fruto con moho: Variación entre ciclos (no significativo).


• Rendimiento industrial: Ligero incremento en tratamiento (no significativo).

Calidad visible

En ambos años se obtuvo menor incidencia de frutos vanos en el sector tratado, probablemente atribuido a la mejora en la absorción de nutrientes y bioestimulación del cultivo.

En 2022 se presentaron condiciones más favorables para la aparición de hongos en ambos sectores. **No se observó un control significativo**.

Conclusiones

Después de dos años de trabajo, según los objetivos de la evaluación, se puede concluir en lo siguiente:

- Se ha encontrado **mayor concentración de arginina de reserva en el sector tratado** al finalizar cada ciclo, lo cual podría relacionarse con la bioestimulación y aprovechamiento de nutrientes.
- No se reportó ningún daño o alteración relevante en la microbiología endémica del suelo con la aplicación del programa establecido.
- Los resultados de qPCR determinaron que, durante el ciclo 2021 2022, **X. arborícola se mantuvo en concentraciones no mayores a 10³NC/g**, lo cual sugiere un control del patógeno en yemas y follaje. No obstante, se sugiere realizar más pruebas en base al ciclo de X. arborícola y su afectación en la productividad y rendimiento del cultivo.
- Se mostró una relación significativa en la **disminución de fruta vana del sector tratado** durante ambos ciclos, igualmente podría atribuirse a la bioestimulación y aprovechamiento de nutrientes.

¡Gracias por su atención!

Ricardo Delgado CEO Acorgánica ricardo@acorganica.com +56 9 6767 6202

